網(wǎng)站首頁(yè) - 產(chǎn)品中心 - 顯微成像 > 超高速視頻級(jí)原子力顯微鏡 > 日本RIBM HS-AFM超高速視頻級(jí)原子力顯微鏡
和茂儀器
產(chǎn)品中心
產(chǎn)品中心
日本RIBM HS-AFM超高速視頻級(jí)原子力顯微鏡
- 設(shè)備簡(jiǎn)介
- 在線咨詢(xún)
-
產(chǎn)品簡(jiǎn)介:超高速視頻級(jí)原子力顯微鏡(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由日本 Kanazawa 大學(xué) Prof. Ando 教授團(tuán)隊(duì)研發(fā)的,也是世界上第一臺(tái)可以達(dá)到視頻級(jí)成像的商業(yè)化原子力顯微鏡。HS-AFM突破了傳統(tǒng)原子力顯微鏡“掃描成像速慢”的限制,能夠?qū)崿F(xiàn)在液體環(huán)境下超快速動(dòng)態(tài)成像,分辨率為納米水平。樣品無(wú)需特殊固定,不影響生物分子的活性,尤其適用于生物大分子互作動(dòng)態(tài)觀測(cè)。推出至今,全球已有80多位用戶(hù),發(fā)表 SCI 文章 200 余篇,包括Science, Nature, Cell 等頂級(jí)雜志。技術(shù)特征:
√ 掃描速度快 √ 探針小,適用于生物樣品√ 自動(dòng)校正,適合長(zhǎng)時(shí)間測(cè)樣◆ 掃描速度最高可達(dá) 20 frame/s ◆ 有 4 種掃描臺(tái)可供選擇◆ 懸臂探針共振頻率高,彈簧系數(shù)小。避免了對(duì)生物樣品等的損傷◆ 懸臂探針可自動(dòng)漂移校準(zhǔn),適用于長(zhǎng)時(shí)間觀測(cè)。技術(shù)原理:超高速視頻級(jí)原子力顯微鏡應(yīng)用領(lǐng)域:應(yīng)用包括:利用 HS-AFM可在納米尺度動(dòng)態(tài)實(shí)時(shí)記錄生物大分子的運(yùn)動(dòng)以及分子間相互作用,包括:walking myosin V實(shí)時(shí)觀察dendrite growth inneuron 實(shí)時(shí)觀察rotorless F1-ATPase實(shí)時(shí)觀察light response for D69N實(shí)時(shí)觀察IgG antibody 150nm * 150nm plasmid DNA 250nm * 250nm myosinⅡ 500nm * 500nm bacteriorhodopsin 40nm * 40nm lipid membrane3500nm * 3500nm350nm poly beads 900nm * 900nm E.coli 3000nm * 3000nm 350nm poly beads 3000nm * 3000nm 超高速視頻級(jí)原子力顯微鏡相關(guān)應(yīng)用案例:1.Video imaging of walking myosin V 實(shí)時(shí)觀察myosin V蛋白的運(yùn)動(dòng)N. Kodera et al. Nature 468, 72 (2010). Kanazawa University2.Real-space and real-time dynamics of CRISPR-Cas9 實(shí)時(shí)顯示CRISPR基因編輯Mikihiro et al. Nature Communications, (2017). Kanazawa University設(shè)備規(guī)格及參數(shù):標(biāo)準(zhǔn)配置 掃描速度 scan speed 50 ms/frame (20 frames/sec) 壓電掃描器 piezo range X: 0.7µm, Y:0.7µm, Z: 0.4µm 樣品大小 sample size 1.5mm in diameter 掃描環(huán)境 environment In liquid/In air 控制系統(tǒng) control system PID control, Dynamic PID control significant Function Scanner active dumping,Drift correction for cantilever excitation 可選配置 光照裝置Light irradiation UnitLight irradiation unit for the experiments with cagedcompounds. Variable wavelength: 350-560nm寬掃描臺(tái)wide scanner1frames/s;XY:4µm×4µm, Z:0.7µm 超寬掃描臺(tái)Amplifiedultra wider scanner0.1frames/s;XY:30µm×30µm, Z:1.2µm 微流控系統(tǒng)Circulation unitThe observation solutions can be exchanged whilecontinuing AFM observation.已發(fā)表文獻(xiàn)(2017年):1. Ando T.; "Directly watching biomolecules in action by high-speed atomic force microscopy"; Biophys. Rev. (2017)2. Ando T.; "High-speed Atomic Force Microscopy for Observing Protein Molecules in Dynamic Action", Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics (2017)3. Aybeke E., Belliot G., Lemaire‐Ewing S., Estienney M., Lacroute Y., Pothier P., Bourillot E., Lesniewska, E.; "HS‐AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts"; Small 13 1 (2017)4. Cai W, Liu Z., Chen Y., Shang G.; "A Mini Review of the Key Components used for the Development of High-Speed Atomic Force Microscopy"; Science of Advanced Materials Vol. 9 Numb. 1 (2017) p.77-885. Colom A., Redondo-Morata L., Chiaruttini N., Roux A., Scheuring S.; "Dynamic remodeling of the dynamin helix during membrane constriction"; Proceedings of the National Academy of Sciences 114 21 (2017)6. Dufrêne Y., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber Ch., Müller D.; "Imaging modes of atomic force microscopy for application of molecular and cell biology"; Nat. Nanotechnol. 12 (2017) p.295-3077. Harada H., Onoda A., Uchihashi T., Watanabe H., Sunagawa N., Samejima M., Igarashi K., Hayashi T.; "Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis"; Chemical Science (2017)8. Karner A., Nimmervoll B., Plochberger B., Klotzsch E., Horner A., Knyazev D., Kuttner R., Winkler K., Winter L., Siligan Ch., Ollinger N., Pohl P., Preiner J.; "Tuning membrane protein mobility by confinement into nanodomains"; Nature Nanotechnology 12 3 (2017) p.260-2669. Keya J., Inoue D., Suzuki Y., Kozai T., Ishikuro D., Kodera N., Uchihashi T., Kabir A., Endo M., Sada K., Kakugo A.; "High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM" ; Scientific Reports 7 1 (2017)10. Kim Y.; "An Advanced Characterization Method for the Elastic Modulus of Nanoscale Thin-Films Using a High-Frequency Micromechanical Resonator"; Materials 10 7 (2017)11. Kim Y.; "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam"; Journal of Sandwich Structures & Materials (2017)12. Korolkov V., Baldoni M., Watanabe K., Taniguchi T., Besley E., Beton P.; "Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays"; Nature Chemistry (2017)13. Legrand B., Salvetat J.-P., Walter B., Faucher M., Théron D., Aimé J.-P.; "Multi-MHz micro-electro-mechanical sensors for atomic force microscopy"; Ultramicroscopy 175 (2017) p.46-5714. Liao H.-S., Chih-Wen Yang, Hsien-Chen Ko, En-Te Hwu, Ing-Shouh Hwang; "Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy"; Applied Surface Science (2017)15. Matsui S., Kureha T., Hiroshige S., Shibata M., Uchihashi T., Suzuki D.; "Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution"; Angewandte Chemie (2017)16. Mierzwa B., Chiaruttini N., Redondo-Morata L., Moser von Filseck J., König J., Larios J., Poser I., Müller-Reichert T., Scheuring S., Roux A., Gerlich D.; "Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodeling during cytokinesis"; Nature Cell Biology (2017)17. Miyata K., Tracey J., Miyazawa K., Haapasilta V., Spijker P., Kawagoe Y., Foster A., Tsukamoto K., Fukuma T.; "Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation"; Nano Lett. 17 7 (2017) p.4083-408918. Miyazawa K., Watkins M., Shluger A., Fukuma T.; "Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite–water interfaces"; Nanotechnology Vol. 28 Numb. 24 (2017)19. Mohamed M., Kobayashi A., Taoka A., Watanabe-Nakayama T., Kikuchi Y., Hazawa M., Minamoto T., Fukumori Y., Kodera N., Uchihashi T., Ando T., Wong R.; "High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells"; ACS Nano 11 6 (2017) p.5567-557820. Nievergelt A., Andany S., Adams J., Hannebelle M., Fantner G.; "Components for high-speed atomic force microscopy optimized for low phase-lag"; Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017)21. Rangl M., Rima L., Klement J., Miyagi A., Keller S., Scheuring S.; "Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy"; Journal of Molecular Biology 429 7 (2017) p.977-98622. Ren J., Zou Q.; "High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach"; Beilstein J. Nanotechnol. 8 (2017) p.1563-157023. Ricci M., Trewby W., Cafolla C., Voïtchovsky K.; "Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions"; Scientific Reports 7 43234 (2017)24. Rigato A., Miyagi A., Scheuring S., Rico F.; "High-frequency microrheology reveals cytoskeleton dynamics in living cells"; Nature Physics (2017) DOI: 10.1038/NPHYS410425. Ruan Y., Miyagi A., Wang X., Chami M., Boudker O., Scheuring S.; "Direct visualization of glutamate transporter elevator mechanism by high-speed AFM"; PNAS 114 7 (2017) p.1584-158826. Sadeghian H., Herfst R., Dekker B., Winters J., Bijnagte T., Rijnbeek R.; "High-throughput atomic force microscopes operating in parallel"; Review of Scientific Instruments 88 033703 (2017)27. Sakiyama Y., Panatala R., Lim R.; "Structural Dynamics of the Nuclear Pore Complex"; Seminars in Cell and Developmental Biology (2017)28. Shibata M., Watanabe H., Uchihashi T., Ando T., Yasuda R.; "High-speed atomic force microscopy imaging of live mammalian cells"; Biophysics and Physicobiology Vol. 14 (2017) p.127-13529. Terahara N., Kodera N., Uchihashi T., Ando T., Namba K., Minamino T.; "Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor"; Science Advances 3 11 eaao4119 (2017)30. Uchihashi T., Scheuring S.; "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes"; Biochim Biophys Acta. (2017)31. Usukura E., Narita A., Yagi A., Sakai N., Uekusa Y., Imaoka Y., Ito S., Usukura J.; "A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)"; Scientific Reports 7 (2017)32. Watanabe S., Ando T.; "High-speed XYZ-nanopositioner for scanning ion conductance microscopy"; Applied Physics Letters 111 11 (2017)33. Watanabe-Nakayama T., Kodera N., Konno H., Ono K., Teplow D., Yamada M., Ando T.; "Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes"; Biophysical Journal 112 3 (2017)34. Zhang Y., Tunuguntla R., Choi P., Noy A.; "Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy"; Philosophical Transactions of The Royal Society B Biological Sciences 372 (2017)35. Zhang Y., Yoshida A., Sakai N., Uekusa Y., Kumeta M., Yoshimura S.; "In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy" Microscopy 20 (2017) p.272-282更多文獻(xiàn)詳見(jiàn): http://www.highspeedscanning.com/hs-afm-references.html部分用戶(hù)列表: